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Abstract
In this work the variation of the exchange coupling between magnetic layers
across a non-magnetic spacer layer, due to impurities of the magnetic material in
the spacer, is calculated. The impurities are treated in the dilute limit and beyond
it. It is shown that the change per impurity is comparable to the unperturbed
coupling per atom, and that it oscillates as a function of spacer layer thickness
with the same period as that coupling, though with a different phase. The most
favourable magnetic moment orientation of the impurity is found for some
spacer layer thicknesses and impurity positions. It is also shown that the short-
period oscillations of the coupling may be much more affected by the presence
of impurities than the long-period ones.

1. Introduction

Oscillations in the exchange coupling between layers of a metallic ferromagnet across a non-
magnetic metal were first observed about one decade ago by Parkin et al [1]. This phenom-
enon has attracted a great deal of attention and has become the subject of intensive research
activity since then. Significant progress has been made towards the understanding of the basic
mechanism responsible for the effect (for a comprehensive review see reference [2]). However,
the poor agreement between experimental and theoretical results for the exchange coupling
in metallic multilayers, in particular with respect to the oscillation amplitudes, has been a
matter of concern for both theoreticians and experimentalists. The source of disagreement
is usually attributed to deviations from the idealized situation often assumed in theoretical
works. For example, the existence of sharp interfaces and of perfect crystallinity in the
layers are assumptions underlying most of the theoretical studies of the coupling. Real
systems always exhibit some degree of imperfections, and this has been regarded as the
main source of the discrepancies between measurements and calculations. In fact, the role
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of interface quality in the oscillatory coupling has been clearly demonstrated by Unguris
et al [4].

The precise state of the interfaces in real samples cannot be easily characterized
experimentally. Therefore, it is important to investigate how different types of deviation
from perfectly flat interfaces affect the coupling. Edwards et al [21] have considered interface
structures consisting of plateaus periodically arranged along one of the directions parallel to
the interface. An alternative approach adopted by several authors [3, 6, 18] is based on the
calculation of configuration averages of the coupling over different interface profiles. This
is achieved by regarding the interface region as consisting of an alloy of the magnetic and
non-magnetic materials, with suitable composition, and by calculating the coupling within
the coherent potential approximation. It is worth pointing out that the introduction of the
configuration average recovers to some extent the translation symmetry of the system parallel
to the atomic planes, reducing the effects of incoherent scattering at the interface. As regards
deviations from crystallinity within the spacer layer, very little has been done from the
theoretical point of view.

Here we investigate how the exchange coupling is affected by magnetic impurities
localized in the spacer, both in the interface region and well within the spacer. We first
deal with single magnetic impurities (diluted regime), and next consider the case of plateaus of
magnetic atoms at the interface between one of the magnetic layers and the spacer. In the case
of impurities inside the spacer, the orientation of the impurity magnetization relative to those
of the ferromagnetic layers is determined so as to minimize the total energy of the system.
Calculations are performed for two spacer band fillings, corresponding to long- and short-
period exchange-coupling oscillations. We find that the effects of the presence of magnetic
atoms in the spacer are more important in the latter case, and increase with the size of the
clusters.

2. Theory

Our system consists of two parallel atomic layers of a ferromagnetic metal embedded in a non-
magnetic material. We label the two ferromagnetic layers 0 andN + 1, so the spacer thickness
is equal to N atomic planes. For simplicity, we shall use a single-orbital tight-binding model
with nearest-neighbour hoppings only, on a simple cubic lattice. We assume that the exchange
interaction within the magnetic material is described by a local exchange potential Vex .

We first deal with the case of a single impurity atom of the magnetic layer material placed
in the spacer at an arbitrary site in plane l, where 0 < l < N + 1. To calculate the coupling
between the ferromagnetic layers, we evaluate the energy necessary to rotate the magnetization
m̂B of layer N + 1 relative to that of layer 0 (m̂A). We assume that the impurity magnetic
moment has the same value as the magnetization per atom of the magnetic layers. For various
spacer thicknesses and impurity positions we consider, in each case, four possible magnetic
arrangements of the system, namely, the magnetic impurity moment m̂i may be either parallel
or anti-parallel to m̂A, as represented in figure 1. Total-energy differences between these states
have been calculated and the most stable magnetic configuration for the impurity is determined
for each arrangement of the ferromagnetic layers. The interlayer coupling was then obtained
by calculating the work necessary to rotate the magnetization of the ferromagnetic layers from
parallel to anti-parallel.

First we consider the change in the coupling caused by a single impurity in the spacer,
and then the effects due to the presence of magnetic plateaus at the interface.
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Figure 1. A schematic view of the four possible arrangements of the system with one impurity.
The lines with arrows represent the magnetic planes and the filled circles with arrows represent the
impurity; the arrows denote the direction of the local magnetization. The closed polygon regions
represent the non-magnetic material.

2.1. Impurity at the interface

We start by considering an extra atom of the magnetic material in plane 1 of the spacer, next
to ferromagnetic plane 0. In this case, due to the proximity between the impurity atom and
plane 0, it is reasonable to assume that the impurity magnetic moment remains parallel to m̂A

no matter what the orientation of m̂B is relative to m̂A. The work necessary to rotate m̂B by an
angle θ with respect to m̂A is given by


�(θ) = �(θ)−�(0) (1)

where �(θ) is the thermodynamic potential of the system. We can write

�(θ) = �(0)(θ) + δ�(θ) (2)

where the superscript (0) refers to the system without the impurity atom, and δ�(θ) cor-
responds to the change in the thermodynamic potential due to the introduction of the impurity
atom. The interlayer coupling is defined as J = 
�(π), and so we have that

J = J (0) + δJ. (3)

J (0) can be obtained using several very general methods [13, 15, 16], so the evaluation of
the effects of impurity on the coupling rests on the calculation of δJ . This can be done as
described below.

We assume that the impurity perturbing potential V̂ is restricted to the impurity site and
is given by

V̂ = v|1, �0〉〈1, �0| (4)

where |1, �0〉 is the atomic state localized on site �R = �0 of plane l = 1, and v = V0I − Vexσz.
Here, V0 is the non-magnetic potential difference between the spacer and the magnetic layer
material, Vex is the strength of the local exchange potential at the impurity site, I is the identity
matrix in spin space, and σz is the usual Pauli matrix. It follows that

δ�(θ) = − 1

β

∫ +∞

−∞
dω ln(1 + eβ(µ−ω)) δD(ω, θ) (5)
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where δD(ω, θ) is the corresponding change in the density of states of the system due to the
introduction of the impurity, β = 1/kBT , and µ is the chemical potential. The change in the
density of states δD is given by

δD(ω, θ) = − 1

π
Im Tr

∑
j

δGjj (ω, θ) (6)

where ‘Tr’ stands for the trace over spin and atomic orbital indices, the sum is over all atomic
sites j = (l, �R), and

δGjj (ω, θ) = Gjj (ω, θ)−G(0)jj (ω, θ) (7)

is the change in the site-diagonal matrix elements of the one-electron Green function due to
the impurity. Using Dyson’s equation in operator notation, we find

δĜ(ω, θ) = Ĝ(0)(ω, θ)T̂ (ω, θ)Ĝ(0)(ω, θ) (8)

where T̂ = V̂ (1 − Ĝ(0)(θ)V̂ )−1 is scattering-matrix operator. Due to the local character of the
impurity potential, it is straightforward to show that

δ�(θ) = 1

π
Im Tr

∫ +∞

−∞
dω f (ω) ln

[
1 −G(0)

1,�0;1,�0(ω, θ)v
]

(9)

where f (ω) is the Fermi–Dirac distribution function and

G
(0)
1,�0;1,�0(ω, θ) = 〈1, �0|G(0)(ω, θ)|1, �0〉.

After some algebra, we obtain the impurity contribution to the coupling as given by

δJ = 1

π
Im Tr

∫ +∞

−∞
dω f (ω) ln

[
"(ω, π)"−1(ω, 0)

]
(10)

where "(ω, θ) = 1 −G(0)
1,�0;1,�0(ω, θ)v.

In view of the in-plane translational invariance of the unperturbed system, it is convenient
to express G(0)

1,�0;1,�0(ω, θ) in terms of the plane-diagonal matrix elements of the unperturbed

Green function in the mixed representation G(0)11 (
�k‖, ω, θ) as

G
(0)
1,�0;1,�0(ω, θ) =

∑
�k‖
G
(0)
11 (

�k‖, ω, θ) (11)

where �k‖ is a wave vector parallel to the atomic planes belonging to the two-dimensional
Brillouin zone.

2.2. Impurity anywhere in the spacer

As regards the case in which the impurity occupies an arbitrary position in the spacer layer, the
theory described above has to be changed so as to allow the impurity magnetic moment to point
either up or down relative to m̂0, depending on whether the configuration of the magnetic layers
is ferromagnetic (θ = 0) or antiferromagnetic (θ = π ). This can be achieved by introducing
the perturbing potential

V̂ξ = vξ |l�0〉〈l�0| (12)

where vξ = V0I − ξVexσz, and ξ = +1 (−1) for the impurity’s spin pointing up (down). Here
we have assumed, without loss of generality, that the impurity occupies the site �R = �0 of
plane l.
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The change in the thermodynamic potential due to the introduction of the impurity in the
system is now given by

δ�(θ, ξ) = 1

π
Im Tr

∫ +∞

−∞
dω f (ω) ln

[
1 −G(0)

l,�0;l,�0(ω, θ)vξ
]
. (13)

When we allow the impurity magnetic moment to point either up or down in both the ferro-
magnetic and antiferromagnetic configurations of the magnetic layers, we first calculate

δ�(0) = min{δ�(0,+1); δ�(0,−1)} (14)

and

δ�(π) = min{δ�(π,+1); δ�(π,−1)}. (15)

The impurity contribution to the coupling is then given by

δJ = δ�(π)− δ�(0). (16)

When the impurity is situated next to the magnetic plane (0), in the spacer, we find that its
magnetic moment remains pinned to m̂A no matter what the orientation of �mB is, which fully
justifies the assumption that we made in subsection 2.1.

2.3. Magnetic plateaus at the interface

We now calculate the effects on the coupling due to the presence of a plateau of magnetic
atoms at the interface between the magnetic plane (0) and the spacer. We consider p magnetic
atoms occupying neighbouring sites on plane l = 1 of the spacer. As in the case of a single
impurity at the interface, we assume that the magnetic moments of the atoms in the plateau
are parallel to the magnetization of plane (0). The perturbing potential is given by

V̂ = v
p∑
s=1

|1, �Rs〉〈1, �Rs |. (17)

The calculation of δJ is similar to that for the single impurity at the interface, the difference
being that in the present case one has to deal with (p× p) matrices. After some manipulation
we end up with the following expression:

δJ = 1

π
Im

∫ +∞

−∞
dω f (ω)Tr ln

{[
"(ω, π)]["−1(ω, 0)

]}

where

["(ω, θ)] = [1] − [G(0)(ω, θ)]v

with

[G(0)(ω, θ)](1, �R),(1, �R′) = 〈1, �R|G(0)(ω, θ)|1, �R′〉.

3. Results and conclusions

Here we present results on δJ for all of the situations considered in the previous section. In
our calculations we have chosen the unit of energy such that the nearest-neighbour hopping
t = 1/2. A typical value of Vex = 0.2 was used, and for simplicity the non-magnetic part of
the potential was taken as constant throughout the system, i.e., V0 = 0. The effect of V0 on
the exchange coupling has been thoroughly investigated by Ferreira et al [17]. We have also
assumed that the atomic planes have (0, 0, 1) orientation, and calculations were performed for
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Figure 2. δJ (π) and J 0(π)/N‖ (dashed line) for the impurity with spin up close to the first
interface, for EF = −1.05 (a) and EF = 2.5 (b).

two different values of EF , namely, −1.05 and 2.5, corresponding to long- and short-period
oscillations of J (0), respectively.

Figure 2 shows δJ as a function of the spacer thickness for an impurity sitting next to
magnetic plane (0), and forEF equal to −1.05 (a) and 2.5 (b). For comparison, corresponding
results for the coupling J (0)/N‖, where N‖ is the number of atoms within each atomic plane,
are also presented (open symbols). We notice that δJ oscillates as a function of the spacer
thickness with the same period of J . This can be proved analytically in the asymptotic regime
(N � 1), using the stationary-phase method [23–25]. The procedure is very close to that used
to investigate the asymptotic behaviour of the coupling as a function of the spacer thickness.
In both cases we find that the oscillation periods are determined by the extremal dimensions
of the spacer Fermi surface in the direction perpendicular to the layers [5, 7, 24]. We notice
that the amplitude of δJ is comparable to (or even greater than) that of J (0)/N‖. In addition,
there is a phase difference between the two curves, which leads to a reduction of the coupling
in the presence of magnetic impurities at the interface. Such an effect is more pronounced in
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Figure 3. Weighted averages of δJ (π) over various impurity positions in the spacer for probability
distributions P1 (a) and P2 (b) (see equation (18)). The calculated results are for EF = −1.05.
The dashed lines represent J (0)(π)/N‖.

the case of short-period oscillations (cf. figure 2(b)).
In order to assess the effects of magnetic impurities placed anywhere within the spacer

layer, we have taken the average of δJ over the impurity position assuming two different
probability distributions P(l) for the impurity position, namely

P1(l) = 1

N

P2(l) = 1

P (e
−l/λ + e(l−N+1)/λ)

(18)

where

P =
N∑
l=1

P2(l).

In the first case, the impurity may occupy any atomic plane in the spacer with equal probability,
whereas in the second it is more likely to be found close to one of the magnetic layers. The
actual value of the parameter λ, which is determined by the impurity diffusion within the
spacer, depends on the growth conditions and heat treatment that the sample might have been
subjected to. In our calculations we have taken λ = 0.2.
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Figure 4. Weighted averages of δJ (π) over various impurity positions in the spacer for probability
distributions P1 (a) and P2 (b) (see equation (18)). The calculated results are for EF = 2.5. The
dashed lines represent J (0)(π)/N‖.

Figure 3 depicts δJ (full symbols) as a function of the spacer thickness for EF = −1.05,
and distributions P1(l) (a) and P2(l) (b). In each case, open symbols correspond to J (0)/N‖.
We notice that for long-period oscillations the effect on the coupling due to magnetic impurities
is more pronounced when they are uniformly distributed within the spacer. However, for short-
period oscillations, we find that δJ is not very sensitive to the impurity distribution. This is
made clear in figure 4, which shows the change in the coupling for EF = 2.5 and for the two
distributions P1(l) (a) and P2(l) (b). Here again open symbols represent J (0)/N‖.

Now we turn our attention to the case of magnetic plateaus at the interface of the magnetic
plane (0) and the spacer. This is a very interesting situation, since the calculation of δJ now
takes into account the effects of quantum interference between electronic waves scattered by
neighbouring atoms in the plateau. In figure 5 we show the results for δJ for a two-atom
plateau (full circles) and a four-atom plateau (full squares), for EF = −1.05. Corresponding
results for EF = 2.5 are presented in figure 6. For the two Fermi energies, we notice that to
a good approximation δJ scales with the number of atoms in the plateau. This is particularly
clear in the case of short-period oscillations (EF = 2.5), as shown in figure 7, where δJ for
N = 7 is presented as a function of the number of magnetic atoms in the plateau, for both
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Figure 5. Exchange-coupling variation δJ (N) in the presence of two-impurity (solid line) and
four-impurity (dashed line) clusters in the first plane of the non-magnetic spacer, for Fermi energy
EF = −1.05.
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Figure 6. Exchange-coupling variation δJ (N) in the presence of two-impurity (solid line) and
four-impurity (dashed line) clusters in the first plane of the non-magnetic spacer, for Fermi energy
EF = 2.5.

EF = −1.05 (full squares) andEF = 2.5 (full circles). On the basis of these results, one might
obtain a reasonable approximation for δJ in the case of a finite concentration x of impurities
by simply multiplying δJ by x, at least in the dilute impurity regime. Such a result supports
the use of the coherent potential approximation to calculate the interlayer coupling.

In conclusion, we have investigated the effects of imperfections in the crystalline structure
on the exchange coupling in metallic multilayers. In the case of magnetic impurities in
the spacer, we have found that for long-period oscillations their effect on the coupling is
more pronounced when they are uniformly distributed. On the other hand, for short-period
oscillations, δJ does not turn out to be very sensitive to the impurity distribution. Our results
indicate that the effects of a finite concentration of impurities may be superimposed, at least
in the low-concentration regime.
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Figure 7. The amplitude |δJ | for varying cluster size for Fermi energies EF = −1.05 (solid line)
and EF = 2.5 (dashed line). A strong growth of the impurity’s contribution with the size of the
clusters is clearly seen.
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